Moiré patterns as a probe of interplanar interactions for graphene on h-BN.

نویسندگان

  • M M van Wijk
  • A Schuring
  • M I Katsnelson
  • A Fasolino
چکیده

By atomistic modeling of moiré patterns of graphene on a substrate with a small lattice mismatch, we find qualitatively different strain distributions for small and large misorientation angles, corresponding to the commensurate-incommensurate transition recently observed in graphene on hexagonal BN. We find that the ratio of C-N and C-B interactions is the main parameter determining the different bond lengths in the center and edges of the moiré pattern. Agreement with experimental data is obtained only by assuming that the C-B interactions are at least twice weaker than the C-N interactions. The correspondence between the strain distribution in the nanoscale moiré pattern and the potential energy surface at the atomic scale found in our calculations makes the moiré pattern a tool to study details of dispersive forces in van der Waals heterostructures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition

To grow precisely aligned graphene on h-BN without metal catalyst is extremely important, which allows for intriguing physical properties and devices of graphene/h-BN hetero-structure to be studied in a controllable manner. In this report, such hetero-structures were fabricated and investigated by atomic resolution scanning probe microscopy. Moiré patterns are observed and the sensitivity of mo...

متن کامل

Gate-dependent pseudospin mixing in graphene/boron nitride moire superlattices

Electrons in graphene are described by relativistic Dirac–Weyl spinors with a two-component pseudospin1–12. The unique pseudospin structure of Dirac electrons leads to emerging phenomena such as the massless Dirac cone2, anomalous quantum Hall e ect2,3, and Klein tunnelling4,5 in graphene. The capability to manipulate electron pseudospin is highly desirable for novel grapheneelectronics, and it...

متن کامل

Atomic-Scale Variations of the Mechanical Response of 2D Materials Detected by Noncontact Atomic Force Microscopy.

We show that noncontact atomic force microscopy (AFM) is sensitive to the local stiffness in the atomic-scale limit on weakly coupled 2D materials, as graphene on metals. Our large amplitude AFM topography and dissipation images under ultrahigh vacuum and low temperature resolve the atomic and moiré patterns in graphene on Pt(111), despite its extremely low geometric corrugation. The imaging me...

متن کامل

Electron interactions and gap opening in graphene superlattices.

We develop a theory of interaction effects in graphene superlattices, where tunable superlattice periodicity can be used as a knob to control the gap at the Dirac point. Applied to graphene on hexa-boron-nitride (G/h-BN), our theory predicts substantial many-body enhancement of this gap. Tunable by the moiré superlattice periodicity, a few orders of magnitude enhancement is reachable under opti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 113 13  شماره 

صفحات  -

تاریخ انتشار 2014